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Icariside II inhibits lipopolysaccharide-induced inflammation
and amyloid production in rat astrocytes by regulating
IKK/IκB/NF-κB/BACE1 signaling pathway
Yong Zheng1,2, Yan Deng1, Jian-mei Gao1,2, Chun Lv2, Ling-hu Lang1, Jing-shan Shi2, Chang-yin Yu3 and Qi-hai Gong1,2

β-amyloid (Aβ) is one of the inducing factors of astrocytes activation and neuroinflammation, and it is also a crucial factor for the
development of Alzheimer’s disease (AD). Icariside II (ICS II) is an active component isolated from a traditional Chinese herb
Epimedium, which has shown to attnuate lipopolysaccharide (LPS)-induced neuroinflammation through regulation of NF-κB
signaling pathway. In this study we investigated the effects of ICS II on LPS-induced astrocytes activation and Aβ accumulation.
Primary rat astrocytes were pretreated with ICS II (5, 10, and 20 μM) or dexamethasone (DXMS, 1 μM) for 1 h, thereafter, treated with
LPS for another 24 h. We found that ICS II pretreatment dose dependently mitigated the levels of tumor necrosis factor-alpha (TNF-
α), interleukin-1 beta (IL-1β), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) in the astrocytes. Moreover, ICS II not
only exerted the inhibitory effect on LPS-induced IκB-α degradation and NF-κB activation, but also decreased the levels of Aβ1–40,
Aβ1–42, amyloid precursor protein (APP) and beta secretase 1 (BACE1) in the astrocytes. Interestingly, molecular docking revealed
that ICS II might directly bind to BACE1. It is concluded that ICS II has potential value as a new therapeutic agent to treat
neuroinflammation-related diseases, such as AD.
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INTRODUCTION
Alzheimer’s disease (AD) is a progressive neurodegenerative
disease characterized by beta-amyloid (Aβ) peptide fibrils, which
are extracellular depositions of a particular protein and are
accompanied by extensive neuroinflammation [1–3]. A number of
studies have reported that inflammation, which may precede
amyloid deposition, exerts vital effects in the pathogenesis of AD
[4, 5]. Moreover, inflammatory mediators increase the expression
of amyloid precursor protein (APP) and the formation of Aβ and
upregulate beta-secretase activity [6]. Therefore, antiinflammatory
drugs may prevent or treat AD by inhibiting neuroinflammation,
thereby reducing the production or deposition of Aβ [7–10].
However, there are still no ideal antiinflammatory drugs to prevent
or treat AD.
Astrocytes and microglia are important components of home-

ostasis in the brain [11]. When the brain is exposed to undesirable
environmental conditions, both astrocytes and microglia, which
are crucial perpetrators of inflammation and potential neuronal
dysfunction [12, 13], acquire special “response” or “activation”
phenotypes [14, 15]. In AD, the interaction between microglia and
astrocytes may be of great significance for the development of
neurodegenerative disease. In particular, astrocytes represent the
most plentiful cell type in the brain and play an imperative role in

maintaining the homeostasis of the central nervous system
[16–18]. Under physiological conditions, astrocytes play a role in
supporting and separating nerve cells [19–22]. Nevertheless,
under neuroinflammatory conditions, the excessive activation of
astrocytes is involved in the inflammatory response through its
ability to release multiple molecules and further lead to
neurodegenerative diseases [23–25].
Epimedium is a traditional Chinese herb used for the treatment

of cardiovascular diseases, osteoporosis, and sexual and neurolo-
gical disorders [26]. Icariside II (ICS II) is known as one of the major
active pharmaceutical ingredients of Epimedium, and it has been
indicated to have an extensive range of pharmacological effects,
including antiinflammatory [27, 28], anticancer [29, 30], antiox-
idative [31, 32], and antiaging activities [33]. Our previous study
found that ICS II attenuates streptozotocin- or Aβ25-35-induced
cognitive deficits in rats by increasing the number of surviving
neurons in the hippocampus [28] or inhibiting neuronal apoptosis
and reducing PDE5 protein expression [34]. In our previous in vivo
studies, we proved that ICS II exerts beneficial effects on
lipopolysaccharide (LPS)-induced neuroinflammation by regulat-
ing the TLR4/MyD88/NF-κB signaling pathway in rats and
inhibiting LPS-induced astrocyte overactivation [35]. However,
whether ICS II can suppress neuroinflammatory responses in vitro
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remains unclear. Thus, in the current study, we investigated the
effects of ICS II on lipopolysaccharide (LPS)-induced neuroin-
flammation in primary astrocytes and the underlying molecular
mechanism.

MATERIALS AND METHODS
ICS II (purity ≥ 98%) was obtained from Nanjing Zelang Medical
Technology Corporation Ltd (Nanjing, China). DMEM/F12 was
obtained from HyClone (Logan, UT, USA), and fetal bovine serum
(FBS) was purchased from Gibco (Thermo Fisher Scientific, MA,
USA). Dexamethasone (DXMS) and LPS (L 2630) (Escherichia coli
O111:B4) were purchased from Sigma-Aldrich (St Louis, MO, USA).
DXMS and LPS were dissolved in normal saline at concentrations
of 1 mM and 1mg/mL, respectively, and ICS II was dissolved in
dimethyl sulfoxide (DMSO) at a concentration of 10 mM.
Anticyclooxygenase-2 (COX-2) (#ab15191), anti-nitric oxide
synthase (iNOS) (#ab15323), antinuclear factor-κB (NF-κB) (p65)
(#ab16502), anti-p-NF-κB (p65) (#ab86299), anti-IκB-α (#ab7217),
anti-IKK-α (#ab32041), anti-p-IKK-α (#ab38515), anti-IKK-β

(#ab124957), anti-p-IKK-β (#ab59195), and anti-β-site APP cleaving
enzyme (BACE1) (#ab108394) antibodies were purchased from
Abcam (Cambridge, UK). Anti-APP (#AB60097b) was purchased
from BBI Life Sciences Corporation (Shanghai, China). Tumor
necrosis factor-alpha (TNF-α) enzyme-linked immunosorbent assay
(ELISA) kits (an interleukin-1 beta (IL-1β) ELISA kit, an Aβ1–40 ELISA
assay kit (JL10226), and an Aβ1–42 ELISA kit (JL10958)) were
purchased from Shanghai Jianglai Biotechnology (Shanghai,
China). A nitric oxide (NO) detection kit (S0021) was purchased
from Beyotime Biotechnology (Shanghai, China).

Astrocyte culture and drug treatment
Sprague-Dawley rats (250 ± 50 g) were housed under a 12-h-light/
dark cycle at a humidity of 50% ± 5% and a temperature of 24 °C.
All animals were given free access to water and food. Animal
experiments were performed in compliance with the State
Committee of Science and Technology of the People’s Republic
of China Order No. 2 of November 14, 1988, and the protocol was
approved by the Experimental Animal Ethics Committee of the
Zunyi Medical University. Primary astrocytes were extracted from

Fig. 1 Identification of astrocytes and the determination of the safe concentration range of ICS II. a Identification of cellular
immunofluorescence (scale bar= 50 μm, x200). b The safe concentration range of ICS II within 24 h (n= 5). c The safe concentration range
of ICS II within 48 h (n= 5). d The safe concentration range of ICS II within 72 h (n= 5). *P < 0.05, **P < 0.01 versus control group
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neonatal rat brains as previously described [36]. Primary astrocytes
were isolated from the cerebral cortex of 24-h-old neonatal rats.
Briefly, suckling rats were repeatedly disinfected with 75% alcohol
three times, and then the brains were removed, and the brain
tissues were separated. Then, the cerebral cortex was collected
under low temperatures, and the meninges and blood vessels
were slightly removed. The cerebral cortex was fully dissociated by
the addition of 10 mL of trypsin, the flask was treated with
polylysine, and the suspension was spread in a culture flask at a
cell density of 3 × 105 cells/mL. The differential adherence method
was used to remove other types of cells in the tissue, and then
astrocytes were cultured in DMEM/F12 containing 10% FBS. The
DMEM/F12 was changed every 3 days until the 13th day. The
primary cells were shaken at 37 °C at a constant temperature to
remove other glial cells, such as microglia and oligodendrocytes.
Thereafter, the astrocytes were fixed with 4% paraformaldehyde,
incubated with an anti-GFAP antibody (1:500, Abcam), and
visualized using an Alexa Fluor-conjugated secondary antibody
(1:1000, Abcam). More than 95% of the cultured astrocytes were
identified by GFAP staining, and the astrocytes were pretreated
with different concentrations of ICS II or DXMS (1 μM) for 1 h.

Thereafter, they were treated with LPS for another 24 h. Since
DXMS is an effective and classical antiinflammatory drug, it was
selected as a positive control drug to evaluate the antiinflamma-
tory effect of ICS II, and 1 μM was chosen as the desired
concentration of DXMS according to a previous study [37].

Measurement of cell viability
Cell viability was assessed using the 3-[4,5-dimethylthiazol-2-yl]-
2,5-diphenyl tetrazolium bromide (MTT) assay as described in our
previous study [38]. In brief, astrocytes were seeded in a 96-well
plate at 1 × 105 cells/well and treated as described above. Then,
20 μL of MTT (5 mg/mL) was added to FBS-free medium and
cultured for another 4 h. The MTT was removed, and the cells were
lysed with 150 μL of DMSO in each well. The optical density was
measured at 490 nm using a microplate reader. The results of the
treatments were expressed as a percentage of the control.

ELISA assay
In brief, astrocytes were inoculated into 96-well plates at a density
of 1 × 105 cells/well and pretreated with ICS II (5, 10, 20 μM) for 1 h.
LPS (1 mg/mL) and ICS II were added to the plates for 24 h.

Fig. 2 ICS II suppressed inflammatory factors in astrocytes after LPS insult. Astrocytes were pretreated with or without ICS II (5, 10, and 20 μM)
or DXMS (1 μM) for 1 h followed by LPS (1 μg/mL) for another 24 h. a TNF-α level (n= 5). b IL-1β level (n= 5). c Production of NO (n= 5).
d Representative Western blot bands for iNOS and COX-2 proteins. e Quantitation of iNOS protein (n= 3). f Quantitation of COX-2 protein
(n= 3). **P < 0.01 versus control group; #P < 0.05, ##P < 0.01 versus LPS group
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Thereafter, the culture medium was collected and centrifuged for
10min at 16 000 × g. The supernatants were then collected and
used to measure TNF-α, IL-1β, Aβ1–40, and Aβ1-42 levels using ELISA
kits. All data were obtained from at least three independent
experiments.

Measurement of nitric oxide (NO)
Astrocytes were inoculated in 96-well plates at a density of 1 × 105

cells/well and pretreated with ICS II (5, 10, 20 μM) for 1 h. LPS
(1 mg/mL) and ICS II were added to the plates for 24 h. The
accumulation of nitrite in the supernatant was evaluated using the
Griess reaction. Each 50 μL of supernatant was reacted with an
equal volume of Griess reagent and cultured for 15min at room
temperature. The absorbance was detected in a microplate
absorbance reader at a wavelength of 540 nm, and a series of
known concentrations of sodium nitrite was utilized as a standard.

Western blot analysis
Western blot analysis was performed as described in our previous
study [38]. Briefly, astrocytes were treated as mentioned above,
homogenized with protein extraction solution, and lysed for 40
min on ice. The lysate was centrifuged for 15min at 14 000 × g.
Equal amounts of protein (30 μg) were separated on a 10% SDS-
polyacrylamide gel, transferred onto a polyvinylidene difluoride
membrane and incubated with the following specific antibodies:
anti-iNOS (1:1000), anti-COX-2 (1:2000), anti-p65 (1:2000), anti-p-
p65 (1:1000), IκB-α (1:2000), anti-IKK-α (1:2000), anti-p-IKK-α
(1:1000), anti-IKK-β (1:2000), anti-p-IKK-β (1:1000), anti-APP
(1:1000), anti-BACE1 (1:1000), and anti-β-actin (1:2000). Then, the
blots were subjected to the corresponding horseradish
peroxidase-conjugated anti-rabbit or mouse immunoglobulin
G. Thereafter, immunoreactive proteins were measured using an
enhanced chemiluminescence Western blotting detection system.

Fig. 3 ICS II inhibited the LPS-induced phosphorylation of NF-κB in astrocytes. a Representative Western blot bands for p-NF-κB and NF-κB.
b Quantitation of p-NF-κB levels (n= 3). c Representative Western blot bands for NF-κB (nuclear) and NF-κB (cytoplasmic) proteins.
d Quantitation of NF-κB (nucleus) protein (n= 3). e Quantitation of NF-κB (cytoplasmic) protein (n= 3). f Quantitation of NF-κB (nuclear)/NF-κB
(cytoplasmic) protein (n= 3). *P < 0.05, **P < 0.01 versus control group; #P < 0.05, ##P < 0.01 versus LPS group
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Molecular docking
Molecular docking was performed using Autodock 4.2 and
AutodockTools software to observe the affinity of ICS II
and BACE1. The pdb format file for the BACE1 protein was
obtained from the Protein Data Bank (http://www.rcsb.org)
database with a PDB ID of 2ZHV. The molecular docking of the
ICS II and BACE1 proteins was performed using Autodock 4.2.

Statistical analysis
All data were analyzed by SPSS 17.0 statistics software and are
expressed as the mean ± SD. The data were analyzed using one-
way ANOVA followed by the post hoc least significant difference.
All data were obtained from at least three independent
experiments. P < 0.05 was considered significant.

RESULTS
Immunofluorescence identification of astrocytes
We extracted the cultured cells and identified them by staining for
GFAP, which is a specific marker of astrocytes [39]. The results
showed that astrocytes made up 95% of the cultured cells (Fig. 1a).
Furthermore, the results showed that ICS II (1.56, 3.12, 6.25, 12.5, 25,
or 50 μM) for 24, 48, or 72 h had no effect on the astrocytes;
however, ICS II (100, 200, or 400 μM) for 24, 48, or 72 h was cytotoxic
to the astrocytes. Since the concentration of DMSO used to dissolve
ICS II in the experiment did not exceed 0.1%, it was assumed that
the concentration of DMSO itself was not toxic to the cells and that
the toxicity to the cells therefore resulted from the high
concentration of ICS II. Thus, a concentration of ICS below 50 μM
was considered to be the safe concentration range (Fig. 1b–d).
Thereafter, 5, 10, and 20 μM ICS II were used in subsequent
experiments, and DXMS (1 μM) was used as a positive control agent.

Effect of ICS II on the LPS-induced production of TNF-α and IL-1β
The effect of ICS II on the LPS-induced production of TNF-α and IL-
1β in astrocytes was determined using an ELISA assay. The results
showed that ICS II (5, 10, or 20 μM) slightly mitigated the
production of TNF-α (Fig. 2a) and IL-1β (Fig. 2b). Following LPS

stimulation, the production of TNF-α and IL-1β was substantially
elevated compared with that in the control group, while ICS II
markedly alleviated LPS-induced TNF-α and IL-1β overproduction
in a concentration-dependent manner.

Effect of ICS II on LPS-induced NO production and iNOS and COX-2
expression in astrocytes
The effect of ICS II on LPS-induced NO production and iNOS and
COX-2 expression in astrocytes was determined using the Griess
reaction and Western blot analysis, respectively. The results
showed that ICS II decreased LPS-induced NO production in
astrocytes (Fig. 2c). Moreover, iNOS and COX-2 expression levels
were dramatically increased after LPS insult. However, ICS II (5, 10,
and 20 μM) induced a concentration-dependent decrease in the
expression of iNOS and COX-2 in astrocytes compared with that in
the LPS group (Fig. 2d–f).

Effect of ICS II on LPS-induced NF-κB (p65) translocation and the
degradation of IKK-α, IKK-β, and IκB-α
The results suggested that ICS II not only suppressed the LPS-
induced phosphorylation of p65 (Fig. 3a, b) but also prevented
the nuclear translocation of p65 (Fig. 3c–f). Furthermore,
ICS II also suppressed the LPS-induced degradation of IκB-α
(Fig. 4a, b), IKK-α, and IKK-β (Fig. 4c, d). These results indicate that
ICS II mitigates the LPS-induced activation of NF-κB via inhibiting
IκB-α phosphorylation and the translocation of p65 to the
nucleus.

Effect of ICS II on LPS-induced amyloidogenesis in astrocytes
The effect of inflammation on amyloid formation in vitro was also
investigated because neuroinflammation can cause amyloid
production, whereas the aberrant activation of astrocytes is a
major source of neuroinflammation. Astrocytes provide both
mechanical and metabolic support to neurons, regulating the
environment in which they function. To determine the relation-
ship between neuroinflammation and amyloidogenesis, we
investigated whether the antiinflammatory effect of ICS II can
result in antiamyloidogenesis. As shown in Fig. 5a, b, when the

Fig. 4 ICS II suppressed the LPS-induced activation of the NF-κB pathway in astrocytes. a Representative Western blot bands for IκB-α, p-IKK-α,
IKK-α, p-IKK-β, and IKK-β proteins. b Quantitation of IκB-α protein (n= 3). c Quantitation of p-IKK-α/IKK-α protein (n= 3). d Quantitation of
p-IKK-β/IKK-β protein (n= 3). **P < 0.01 versus control group; #P < 0.05, ##P < 0.01 versus LPS group
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cells were unstimulated, they expressed low protein levels of APP
and BACE1, whereas the protein expression of APP and BACE1
increased in response to LPS after 24 h. In addition, ICS II also
decreased LPS-induced Aβ1–40 and Aβ1–42 secretion into the
culture media of astrocytes (Fig. 5c, d). In astrocytes, we also found
that ICS II inhibited the LPS-induced expression of APP and BACE1,
as well as Aβ1–40 and Aβ1–42 levels in a concentration-dependent
manner. These results further indicate that the amyloidogenic
pathway can be promoted by neuroinflammatory stimulation and
that the antiinflammatory effect of ICS II can result in
antiamyloidogenesis.

ICS II binds and inhibits BACE1
Interestingly, mock molecular docking was used to verify whether
ICS II binds to BACE1 protein, and the results showed that the
binding energy of ICS II and BACE1 was −5.78 kcal/mol, which
confirmed that ICS II can bind to BACE1, as the standard threshold
for a molecule to bind to a protein is thought to be greater than or
equal to −5 kcal/mol (Fig. 6a, b). We further investigated the
supposed binding modes and interactions within the amino acid
pocket, including Gly13, Gly230, Gly11, Thr232, Tyr71, Gly74,
Lys107, Asp106, and Phe108 (Fig. 6c, d). Taken together, these
findings show that ICS II may directly affect BACE1 and thus exert
neuroprotective effects.

DISCUSSION
The present study revealed that (1) ICS II protects against LPS-
induced inflammation in primary-cultured astrocytes; (2) the
inhibitory effect of ICS II is due to regulation of the IKK/IκB/NF-

κB signaling pathway; and (3) ICS II decreases Aβ1–40 and Aβ1–42
levels by downregulating APP and BACE1 expression (Fig. 7).
LPS is an effective component of gram-negative bacilli

endotoxin, which can cause a series of inflammatory reactions
in the body and is widely applied to establish animal or cellular
inflammatory models. Moreover, astrocytes represent the most
abundant cell type in the central nervous system, and they exert
a variety of physiological functions through close association
with neurons and other brain structures. Similar to microglia, the
immune and inflammatory properties of astrocytes, which can
promote the secretion of various neuroinflammatory factors,
such as TNF-α and IL-1β, are activated by LPS. Accumulating
evidence has demonstrated that the production of multiple
neuroinflammatory factors, including TNF-α, IL-1β, and iNOS, can
activate the NF-κB pathway, resulting in neuroinflammation [40].
Moreover, the excessive production of neuroinflammatory
factors leads to neuronal damage through the activation of
glial cells. Notably, astrocytes play a key role in central nervous
system inflammation by producing cytokines, such as TNF-α, IL-
1β, and NO, leading to neuronal injury [41]. Therefore, the
suppression of astrocyte activation may be an effective
treatment for neuroinflammation-related diseases [42]. Our
findings showed that LPS induces an increase in proinflamma-
tory factors, which is consistent with the results of previous
studies [43, 44]. ICS II significantly inhibited the LPS-induced
accumulation of TNF-α, IL-1β, NO, iNOS, and COX-2 in primary
culture astrocytes. In addition, these effects were not due to the
cytotoxic effect of ICS II, as evidenced by the observation that
there was no effect on astrocytes at concentrations up to 50 μM.
Moreover, ICS II also inhibited iNOS and COX-2 protein

Fig. 5 Effects of ICS II on the expression of APP and BACE1 and the levels of Aβ1–40 and Aβ1–42. a Quantitation of APP expression (n= 3).
b Quantitation of BACE1 expression (n= 3). c Aβ1–40 level (n= 5). d Aβ1–42 level (n= 5). **P < 0.01 versus control group; #P < 0.05, ##P < 0.01
versus LPS group
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expression in astrocytes. These findings indicate that ICS II exerts
inhibitory effects on inflammation.
Notably, NF-κB not only regulates a variety of inflammatory

factors, such as IL-1β and TNF-α but also plays a key role in

mediating COX-2 and iNOS expression [45]. NF-κB (p50/p65)
heterodimers exist in the cytoplasm of resting cells. However,
under stimulation by LPS, the phosphorylation of IKK was
induced, which subsequently phosphorylates the IκB protein,
resulting in the release of NF-κB (p50/p65) heterodimers.
Then, NF-κB-p65 translocates from the cytoplasm to the nucleus,
thereby promoting the release of proinflammatory
factors, including TNF-α and IL-6 [43, 44]. Consistent with these
studies, the present study showed that LPS induces the
phosphorylation of NF-κB-p65, IκB, and IKK. However, ICS II
abolished these changes, suggesting that ICS II exerts potent
antiinflammatory effects, at least partly through modulating the
IKK/IκB/NF-κB pathway.
APP is a membrane-intrinsic protein expressed in a variety of

tissues and is closely related to AD. APP can be cleaved by α, β,
and γ proteases, and the continuous action of β-protease and γ-
protease can cause APP to be cleaved to produce Aβ [46].
However, Aβ can cause the formation of senile plaques in the
brain and the apoptosis of neuronal cells, thereby causing AD.
Most importantly, mounting evidence has shown that neuroin-
flammation is related to the accumulation of Aβ in the brains of
AD patients [47, 48]. In addition, APP is first cleaved by β-secretase
at its β-cleavage site and is then proteolyzed by the second
enzyme, γ-secretase, to produce Aβ1–42 and Aβ1–40. In particular,
the Aβ1–40 and Aβ1–42 peptides are involved in the amyloidogenic
pathway; Aβ1–40 is the most plentiful species, and Aβ1–42 shows
the strongest neurotoxicity [49, 50]. Of note, BACE1 is an
important rate-limiting enzyme in the APP–Aβ pathway and plays
an important role in the production of Aβ. BACE1 was over-
expressed in the brains of animal models of AD [51]. In contrast, in
the brains of BACE1 knockout mice, the levels of Aβ and sAPPβ are
decreased [52]. In addition, activated astrocytes that release
mediators can induce APP and BACE1 expression, thereby
stimulating Aβ production [53–56]. Notably, NF-κB mediates the
accumulation of APP and the expression of BACE1 to increase Aβ
production [57, 58]. In this study, LPS not only augmented the
production of Aβ1–40 and Aβ1–42 but also upregulated APP and
BACE1, and these findings are consistent with those of previous

Fig. 7 A schematic showing the underlying mechanisms by which
ICS II protects primary-cultured astrocytes against LPS-induced
inflammation. ICS II inhibits proinflammatory mediators via regulat-
ing the IKK/IκB/NF-κB signaling pathway

Fig. 6 ICS II binds and inhibits BACE1. a Visual of the binding sites between ICS II and BACE1. b Visual of the binding surface between ICS II
and BACE1. c Crystal structure of ICS II (green) displaying BACE1 (yellow and purple) bound to the docking pocket. d Amino acid residues
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studies [36, 59]. However, ICS II reversed these changes, revealing
that ICS II exerts inhibitory effects on neuroinflammation via
suppressing the NF-κB/BACE1 signaling pathway, and this was
also evidenced by molecular docking.

CONCLUSION
In conclusion, the current study revealed that ICS II exerts
inhibitory effects on LPS-induced inflammation in astrocytes
through the IKK/IκB/NF-κB/BACE1 signaling pathway, and thus
ICS II may be a promising therapeutic agent for neuroinflamma-
tory diseases, including AD.
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